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Fluctuations and Correlations in a Diffusion-Reaction 
System: Exact Hydrodynamics 

Charles R. Doering,  1 Martin A. Burschka, 2 and Werner Hors themke  3 

We present an exact closed formulation of the reversible diffusion-limited 
coagulation-growth reactions 2A ~ A with irreversible input B -, A in one spa- 
tial dimension. The treatment here accommodates spatial as well as temporal 
variations in the particle density with a complete account of microscopic fluc- 
tuations and correlations. Moreover, spatial and/or temporal variations in the 
transport and reaction coefficients can be included in the model. A general solu- 
tion to the reversible process is presented, and we explore the phenomenon of 
wavefront propagation. 
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1. I N T R O D U C T I O N  

Reaction-diffusion systems have often been used to model  spat iotemporal  
pat tern  format ion in chemistry, (l) biology, (2) geology, (3~ and  physics. (4) 

Usual ly  a macroscopic level of description is adopted. The state of the 

system is characterized by mean-field quantit ies,  viz. the densities of the 
reacting species, which are assumed to obey the law of mass action and 
Fick's law. On  this level of descript ion the temporal  evolut ion of the system 
is governed by a reaction-diffusion equat ion.  Such a t rea tment  neglects 

f luctuations and  correlat ions that occur on microscopic length scales. This 
assumpt ion  is legitimate for most  s i tuat ions of solut ion chemistry. 

However,  recent studies have shown that  microscopic fluctuations can alter 
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the macroscopic dynamics for diffusion-limited reactions in systems of low 
spatial dimensionality (see, e.g., ref. 5). Such situations are encountered, for 
instance, in zeolite catalysis. (6) Reactions here are often diffusion-limited, 
and mordenite and other zeolites have a one-dimensional system of 
channels with diameters on molecular' length scales. 

In this paper we consider a specific model system, namely the 
reversible coagulation-growth process 2A~--~A with irreversible input 
B ~ A, which has the advantage of being amenable to analysis at the 
microscopic level of description. We consider the coagulation reaction 
2A ~ A in the diffusion-controlled limit, where the transport of particles 
constitutes the rate-limiting step. Thus we model the reaction as taking 
place instantaneously upon contact of two of the A species particles/7'8~ 
The usual mean-field reaction-diffusion equation is generally valid only in 
the reaction-controlled limit for small perturbations from states with no 
interparticle correlations. (9~ However, strong particle particle correlations 
can develop in unstirred diffusion-limited processes away from equilibrium, 
and these can greatly modify the macroscopic dynamics. The spatially 
homogeneous mean-field version of the reversible process (2A ~ A) is the 
well-studied Verhulst rate equation (see, e.g., ref. 10) 

d P = k l p - k 2 p 2  (1.1) 
dt 

where kl and k2 are, respectively, the rate coefficients for the A-~ 2A and 
2A ~ A  reactions. Inhomogeneities on the hydrodynamic level, in the 
mean-field description, are described by the Fisher reaction-diffusion 
equation (see, e.g., ref. 11) 

~t = DAp + k ip  - k2p 2 (1.2) 

with macroscopic diffusion coefficient D, which has propagating wavefront 
solutions. 

These particular reactions, in one spatial dimension, allow for an exact 
and closed microscopic formulation of the problem in terms of a single 
linear partial differential equation, from which we may extract the space- 
time-dependent concentration, or density, of particles. We will therefore be 
able to directly confront the mean-field results with exact solutions from a 
microscopic treatment. In this way we can demonstrate explicitly how 
microscopic fluctuations affect the macroscopic behavior of diffusion- 
limited reactions in low-dimensional systems. It will also allow us to assess 
the validity of the reaction-diffusion equation, in particular its prediction of 
a propagating wavefront. 
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The concentration we derive is an ensemble average--a hydrodynamic 
quant i ty--and does not itself fluctuate, but it fully takes into account all 
the microscopic fluctuations in the system and any correlations which may 
develop. The model can also take into account, in an exact way, spatial 
and/or temporal variations in the diffusion and reaction coefficients. 
The results presented here are the generalization to the spatially 
inhomogeneous case of the homogeneous model developed in ref. 7, and 
reviewed in ref. 8. In this paper, the first of a series, we concentrate on the 
general formulation of the problem and study the evolution of spatial 
inhomogeneities resulting from inhomogeneous initial conditions. The out- 
line of the rest of this paper is as follows. In Section 2 we define the model 
by specifying the microscopic reaction and diffusion processes in a spatially 
discrete formulation of the problem. The kinetic equation is derived here, 
and we take the continuum limit to reduce the problem to a partial 
differential equation. Our attention is restricted to the strictly reversible 
process in Section 3, where we write down a closed-form expression for the 
space- and time-dependent concentration in terms of an initial (spatially- 
dependent) concentration, assuming no correlations in the particle posi- 
tions in the initial state. As a specific application, we consider the initial 
condition of half the line in the equilibrium state and half the line empty, 
the usual setting for the study of front popagation. In the final Section 4 we 
indicate more precisely some other directions for exploration which will 
form the contents of other papers in this series. 

2. D E F I N I T I O N  OF THE M O D E L  A N D  D E R I V A T I O N  OF T H E  
K INETIC  E Q U A T I O N  

We initially formulate our model on a one-dimensional lattice, 
of lattice spacing Ax, each of whose sites is either occupied or empty. 
We refer to the objects which can occupy the sites as "particles." The 
microscopic kinetic processes which make up the system are illustrated in 
Fig. 1. They are: 

Diffusion. A particle at site x hops to a neighboring site x __ Ax, as 
shown in Fig. la, at probability rate D(x, t)/Ax 2. It hops to either side at 
this rate, so it evacuates the site x at rate 2D(x, t)/AX 2. This corresponds 
to macroscopic diffusion with diffusion coefficient D(x, t) which may be 
space and time dependent. 

Birth. The reaction A ~ 2 A  is modeled as shown in Fig. lb. A 
particle at site x "gives birth" to another particle at a neighboring site 
x+_Ax at probability rate v/(2Ax), independent of all other processes. 
Again, this is the rate to give birth on either side, so the birth rate of an 
isolated particle is v/Ax. 
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Coalescence. The reverse reaction, 2A-+ A, is illustrated in Fig. lc. 
If a particle either jumps or is born into an occupied site, then it instantly 
coalesces with the previous occupant to become a single particle. We 
impose this reaction on the lattice by restricting the occupation numbers to 
either 0 or 1. 

Input. A spontaneous generation of particles, denoted schematically 
as B--+ A, is shown in Fig. ld. An empty site at x spontaneously becomes 
occupied at probability~ rate R(x, t) Ax, independent of all other processes. 
We refer to this process as "input," and note that R(x, t) is the (possibly 
space- and time-dependent) local rate of input of particles per unit length 
per unit time. 

IN *~ *r J, x I ~. 
'I" I "Y 

(a) (b) (c) (d) 

Fig. 1. The microscopic processes defining the diffusion-reaction system. Occupied sites on 
the lattice are indicated by the presence of particle. (a) Diffusive hopping occurs at rate D/Ax 2 
to the right and D/Ax 2 to the left. (b) The reaction A -+ 2A occurs at rate v/Ax, half this rate 
to the right and half this rate to the left. (c) Coagulation occurs when one particle hops onto 
another. (d) Input to an empty site occurs at rate R Ax. 

A typical approach to such a many-body problem in statistical physics 
is to construct the kinetic equations for a hierarchy of joint probability 
density functions. (t2) The usual closure problems arise at this stage because 
the evolution of the one-particle density, or concentration, depends on 
some two-particle correlations, which in turn depend on higher-particle- 
number correlations, and so on. The key to formulating a closed evolution 
equation for this process, from which we may recover the particle concen- 
tration, is to consider an auxiliary quantity. We have discovered that there 
is a certain quantity, peculiar to the reaction processes outlined above, 
which satisfies a closed kinetic equation without reference to any other 
probabilities. This quantity, denoted E(x, y, t) and defined for all x ~< y, is 

E(x, y, t) = Prob{the sites between x and y (inclusive) are empty at time t} 

(2.1) 

We will refer to this quantity as the "empty interval probability," and we 
illustrate its meaning schematically in Fig. 2. 

E(x,y)  = Prob{  ~x I L L y }  

Fig. 2. Schematic definition of the empty interval probability. 
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This empty interval probability determines the ensemble-averaged 
particle concentration. The density of particles at site x at time t, denoted 
p(x, t), is the probability per unit length that the site at x occupied. That 
is, 

p(x, t) Ax = Prob{site x is occupied at time t} 

= 1 - Prob{site x is empty at time t} 

= 1 - E ( x ,  x, t) (2.2) 

Thus, we may recover the local concentration from a knowledge of 
E(x, y, t). 

To derive a kinetic equation for E(x, y, t), we combine all of the 
processes which can contribute to the evolution of this probability. These 
processes are illustrated schematically in Fig. 3. Consider a short time inter- 
val At, so short that we may neglect the simultaneous occurrence of two 
hops, births, and/or inputs. Then the interval between x and y can be 
vacated in this short time interval, increasing E(x, y, t), only if the interval 
is empty except at endpoint x and the particle there hops to the left [with 
conditional probability D(x, t)At/dx2], or if it is empty except at endpoint 
y, where the particle hops to the right [with conditional probability 
D(y, t)At/Ax2]. These are the first two terms on the right-hand side of the 
equality in Fig. 3. Similarly, an empty interval can become occupied if it 

AE(x ,y )  = 

D ( x , t ) ~ t  
- A x  2 Prob{  e x I I I ~, } 

D(y , t )zXt  
+ - - ~ x  2 Prob(  / I I I ~ ) 

D ( x - , ~ x , t ) M  
Prob{  �9 xl I I t yl } 

x 2 x. 

D ( y + , ~ x , t ) t , t  
- - P r o b {  ~ 1 ', ' , A  X 2 , y + ~ }  

v ( x - A x , t ) & t  
A x  P r ~  i 1 " ~ } 

v ( y + ~ x , t ) ~ t  
Prob{  / I I J I �9 } 

A x  x y+•x 

[R(x, t )+. . .+R(y, t ) ]AtAx P rob {  xi I I I ~, } 

Fig. 3. Schematic description of the change AE in the empty interval probability over a short 
time interval At. 
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was empty, decreasing E(x, y, t), if there was a particle at x - A x  which 
hops to the right [with conditional probability D ( x - A x ,  t)At/Ax 2] or a 
particle at y + A x  which hops to the left [-with conditional probability 
D(y+Ax,  t)At/Ax2]. These are the second pair of terms in Fig. 3. The 
birth of particles into otherwise empty intervals also decreases E(x, y, t), 
due to a particle at x - A x  giving birth into site x [with conditional 
probability v ( x - A x ,  t)At/(2Ax)] or one at y + Ax giving birth into site y 
[-with conditional probability v(y+ Ax, t)At/(2Ax)]. These constitute the 
third pair of terms in Fig. 3. Finally, input of particles decreases the 
probability that each site z between x and y (inclusive) is empty at rate 
R(z, t)Ax, for a total rate 

y 

R(z, t) Ax (2.3) 
z ~ x  

This contributes the final term in Fig. 3. 
The key to the closure of the kinetic equation for the empty interval 

probability is illustrated in Fig. 4. For example, the event that the interval 
from x + Ax to y is empty is the disjoint union of two alternative events: 
that x + Ax to y is empty and so is x, and that x + Ax to y is empty, but 
x is not. Because the probability of the union of two disjoint alternatives 
is just the sum of the probabilities of the alternatives, we can express the 

x+ x ~ - ~ ,  = 

= - ~  ~ ~, ~ ~, U ~ 

(a) 

• 1 1 1 =  Y 

= , 

= x -"~= x' 

I I I I  
Y 

= U I t J I I 
y x y 

(b) 

I I J = 
Y 

= x ~ = = y S ~ x U  x ~ I ~ l y + L ~  

(d) 

Fig.  4. D i s j o i n t  u n i o n s  of  e v e n t s  i n v o l v i n g  t he  e m p t y  i n t e r v a l  a n d  r e l a t e d  events .  

U i i I i J 
y x - ~ x  y 

(c)  
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probability that x + Ax to y is empty but x is occupied in terms of the 
empty interval probabilities. That is, 

Prob{the interval from x + Ax to y is empty but site x is occupied at time t} 

= E(x  + Ax, y, t ) -  E(x, y , t )  (2.4) 

This fact is expressed schematically in Fig. 5, along with the other varia- 
tions relevant to closing the kinetic equation in Fig. 3. These allow us to 
express the evolution of the empty interval probabilities wholly in terms of 
other empty interval probabilities. 

E ( x + ~ x , y )  = P r o b [  = 1 ', ', I } + E(x ,y)  
x Y 

(a )  

E ( x , y - A x )  = P rob {  ', 1 ; ] .= } + E(x ,y )  
x y 

(b) 

E(x ,y )  = PrOb{x~. .A;  ( 1 1 I ~ } + E (X-AX,y )  

( e )  

E(x ,y )  = P r o b { - I  1 ', ; 1 = } + E (x , y+Ax )  
X y + A X  

(d )  

Fig. 5. Schematic illustration of the probabilities of the events in Fig. 4. 

Combining the terms in Fig. 5 with those in Fig. 3, we arrive at the 
closed kinetic equation 

dE(x, y, t) O(x, t) 
at ~x 2 {E(x+~x, y, O-E(x ,  y, t)} 

+D(y, t______~) {E(x, y - ~ x ,  f ) -E(x ,  y, t)} 
Ax 2 

{E(x, y, t ) -  E ( x -  Ax, y, t)} 

{E(x, y, t ) - E ( x ,  y + Ax, t)} 

{E(x, y, t ) - E ( x - A x ,  y, t)} 

{E(x, y, t ) - E ( x ,  y + A x ,  t)} 

O(x - Ax, t) 
Ax z 

D(y + Ax, t) 

Ax 2 

v ( x -  Ax) 
2Ax 

v(y + Ax) 

2Ax 

y 

- ~ R(z, t) Jx  E(x, y, t) 
z ~ x  

(2.5) 
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This equation is valid for all discrete variables y > x. We must also supply 
the kinetic equation for E(x, y, t) when y = x ,  and this follows from 
considerations like those above, with one exception. The probability that 
the site x is not empty at time t is just 1 - E(x, x, t), so that analogs of the 
first and third closure equations in Fig. 5 for the case y = x are obtained by 
replacing, respectively, E(x  + zJx, y, t) by 1 and E(x, y - A t ,  t) by 1. Thus, 
we may assert that 13q. (2.5) is valid even for y = x with the understanding 
that the previously undefined quantities E(x  + ~x,  x, t) and E(x, x -  Ax, t) 
are given by the boundary conditions 

E(x  + Ax, x, t) = 1 and E(x, x - Ax, t) = 1 (2.6) 

The empty interval probability contains information about the 
microscopic spatial structure of the system, although not in the form of the 
familiar correlation functions. Rather, from E(x, y, t) we can deduce a 
nearest neighbor joint probability distribution for particles in the system. 
To see this, consider the event that the interval from x + Ax  to y - A x  is 
empty at time t. As illustrated in Fig. 6, this event is the disjoint union of 
the four alternatives that (i) there are particles at x and y with the inter- 
vening sites empty, (ii) there is one particle at x, none at y, and none in 
between, (iii) there is no particle at x, and none until site y, which is 
occupied, and (iv) there are no particles between x and y inclusive. Again, 
the probability of this disjoint union is the sum of the probabilities of the 
alternatives, so, using the previously derived relationship illustrated in 
Fig. 5, we can express the probability that there are particles at x and y 
with none in between in terms of the empty interval probabilities. We have 
the relation 

Prob{x and y are occupied with no particles in between at time t) 

= E(x,  y, t) + E (x  + Ax, y - Ax, t) - E (x  + Ax, y, t) - E(x,  y - Ax, t) 

(2.7) 

I I t I = 
X+AX y-Ax 

x y 

U ~ I I I I I  
x y 

U I l l l l ~  
x y 

U J l J l l l  
x y 

F i g .  6. D i s j o i n t  u n i o n  o f  e v e n t s  i n v o l v i n g  the  e m p t y  i n t e r v a l  a n d  r e l a t ed  even t s .  
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This quantity provides information on local, microscopic spatial correla- 
tions in the system. In spatially homogeneous systems this quantity (when 
divided by the particle density) is the interparticle distribution function as 
introduced in ref. 7. 

Now we will take the spatial continuum limit of the system and its 
kinetic equation. As the lattice spacing A x ~ O ,  the empty interval 
probability goes over to a function E(x, y, t) of x, y, and t. Its physical 
interpretation remains the same: it is the probability that the interval from 
x to y is empty at time t. Assuming that all quantities vary slowly on the 
scale of the vanishing lattice spacing, we expand all the terms in the kinetic 
equation (2.5) in a Taylor series about x and y, noting that the coefficient 
in the last expression is in the form of a Riemann integral. Then, taking the 
continuum limit Ax---, O, we find the partial differential equation 

~?E(x, y, t) ~ ~E ~3 OE 
~ t ~ x D ( X, t l -~x + ~y D ( y , t ) -ff-fiy 

-21v(x ' t )  OE 10x+2 v(y',t) o E - { f : ' R ( z ' t ) d z }  E(x' (2.8) 

This linear partial differential equation, defined in the region y > x of 
the x - y  plane, is to be supplemented with an initial condition Eo(x, y) 
and two boundary conditions. From Eq. (2.6) we see that at coincidence 
points we have the boundary condition 

lira E(x, y, t ) =  1 (2.9) 
y ~ x o r x ~ y  

The other boundary conditions imposed as either y--* +oo or x ~ - o o  
depend on the specific conditions at hand. For example, if there are no 
particles to the right of a point xo at some instant of time t, then for all 
x, y > Xo we have E(x, y, t) = 1. Such a condition may be fleeting, though. 
Even if there is no particle input for x > x0, and the initial conditions start 
with no particles in that region, then particles will certainly diffuse into the 
"vacuum." However, the transport will proceed at a finite rate--this is just 
the setup for the wave propagation problem--so that far enough to the 
right the system is eventually empty. Then we would have 

lim E(x, y, t ) =  1 (2.10) 
y > x ~ c o  

On the other hand, if we consider a more homogeneous system where the 
particle concentration is nonvanishing everywhere to the right of x o, then 

lira E(x, y, t ) = 0  (2.11) 

822/65/5-6-9 
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Rather than listing all the possibilities here, we just observe that the 
appropriate boundary conditions can be deduced in all reasonable physical 
circumstances. 

The continuous-space version of the particle density is, from Eqs. (2.2) 
and (2.6) with the boundary condition in Eq. (2.9), 

p(x, t )=  lim ~ [1 - E ( x ,  x, t)] 
Ax~oAx 

= lim 1 [E(x, x - Ax, t) - E(x, x, t)] 
Ax+o AX 

_ OE(X,oy y'  t) y = x  (2 .12 )  

And finally, the conditional joint probability density that there are particles 
at x and y but none in between is, from Eq. (2.7), 

p(x, y, t) 

= lim 71__2 Prob {x and y are occupied with no particles in between } 
AxtO Ax 

~32E(x, y, t) 
- ( 2 .13 )  

Ox ~y 

3. S O M E  GENERAL SOLUTIONS A N D  SPECIFIC EXAMPLES 

The time-stationary and spatially-homogeneous version of this 
problem, where both the system coefficients (D, v, and R) and the initial 
conditions are translation invariant, has been solved in refs. 7 and 8. In this 
section, and for the remainder of this paper, we will focus on the case of 
constant (in space and time) coefficients, but with inhomogeneous initial 
conditions. Thus, we will study the relaxation to the statistically 
homogeneous steady state from an initially inhomogeneous configuration. 
Furthermore, we will restrict the analysis to the reversible model 2A +-* A, 
i.e., R(x, t)=-O. First we will derive the general solution for the space- and 
time-dependent density p(x, t) in terms of an initially specified density 
po(X) under the assumption that there are no correlations in the particle 
positions in the initial configuration. Then we will consider a specific initial 
condition where the half-space x < 0 is in the equilibrium state while the 
half-space x > 0 is void of particles. This will allow us to study the front- 
propagation problem for this diffusion-reaction system. 
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Taking the diffusion coefficient D and the birth rate v to be constant, 
the partial differential equation for the empty interval probability becomes 

~E(x, y, t) ~2E c32E v ~E v OE 
Ot - D-~x2 + D . . . .  + - - -  (3.1) 0y 2 2 0x 2 0y 

on the half-space y > x, with the boundary condition 

lim E(x,  y, t ) =  1 (3.2) 
y { x o r x ' f y  

As noted in the last section, the other boundary condition depends on the 
details of the situation under consideration. Spatial inhomogeneities in the 
initial configuration of the system are specified by the initial condition 
Eo(x, y). 

Note that there is a unique stationary, spatially homogeneous solution 
to Eqs. (3.1) and (3.2) which describes the equilibrium state: 

geq(X , y )  = e v~y-x~/2D (3.3) 

The concentration is spatially uniform in the equilibrium state: 

~Eeq(X' Y) y=x v (3.4) 
Peq = ~y = 2-D 

We see that the equilibrium concentration is proportional to the birth rate 
v and inversely proportional to the diffusion coefficient which controls the 
(equilibrium) rate of the coalescence reaction. 

The kinetic equation (3.1) is of the form of a convection-diffusion 
equation, and combined with the simplicity of the boundary conditions, it 
is not surprising that it can be completely solved in closed form. To derive 
the general solution, we first change independent variables to dimensionless 
sum and difference variables 

t3 t) 
~ = ~ ( y + x )  and ~ = ~ ( y - x )  (3.5) 

It is convenient to rescale the time as well, so we introduce the dimen- 
sionless time variable 

1)2 
~ =~-~ t (3.6) 

Then Eqs. (3.1) and (3.2) become 

#E(~, r r) 02E 632E c3E 
ar 2 + T +  (3.7) 
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on the half-space - oo < ~ < ~ ,  0 < f < o% with boundary condition 

lira E(~, f, z) = 1 (3.8) 
~10 

The initial condition may similarly be expressed in terms of the 
dimensionless variables as Eo(~,~). The equilibrium solution in the 
dimensionless units is simply 

Eeq(~ , ~) =- e -~ (3.9) 

We may reduce the problem further, to an elementary heat equation 
in the upper half r plane, by changing the dependent variable to the 
function 

F(~, f, z)=e:/n+{/2(E(~, f, z ) - e  ~) (3.10) 

which obeys the diffusion equation 

C3_F(~, ~, 1:) c~2F 632F 
c3z 8~ 2 + ~3f ~ (3.11) 

and the boundary condition 

The initial condition for F is 

lim F(~, f, z) = 0 (3.12) 
~+o 

Fo(~, f ) =  eC-/2(Eo(~, f ) -  e -c) (3.13) 

The equation for F is solved by introducing the Green function for the 
heat equation on the half-space f > 0 with Dirichlet boundary conditions 
along the line f = 0. That is, 

F(~, ~, z) = de' dr' G(~, ~', f, f', z) Fo(~', f ') (3.14) 
- - o O  

where 

1 G(~, ~', ~, ~', "c)=~-~-~ e (~-r (3.15) 

Reexpressing the solution in terms of the empty interval probability, we 
find the general solution 

E(~, f, ~) 

= e - f  - t -  C -z/4 f/2 d~' dr' G(r ~', f, f', r) eC'/2[Eo(r ', f') - e r 
- - o O  

(3.16) 
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The concentration is derived from this solution as 

v aE(~, ~, r) ~ (3.17) 
p(x,t)= 2-D ~ =o 

Before we explicitly evaluate the space- and time-dependent particle 
density, let us restrict our attention to initial conditions which possess no 
correlations between particle positions. In this situation we determine the 
empty interval probability from the initial concentration po(x) as 

Eo(x, y)=exp[- f~ Po(z)dz] (3.18) 

In terms of the dimensionless variables ~ and ~ this gives 

E~162 ~)= exp I---2D~/2+c/2f) " ~ / 2  --  ~/2 Po (2Da)__ dal (3.19) 

Inserting Eq. (3.19) into Eq. (3.16), and evaluating the density as in 
Eq. (3.17), we have, after some algebra, the general solution 

~ 

= - -  ~ C - -  (~: -- r ) 2 / 4 z  p(x, t) }-~ 1 + - o~ (4~rz) 1/2 (4~r~) 1/2 r 

- -  Po - -  dcr (3.20) 
~) ~ / 2  + ~ ' / 2  - -  r  

In the above, ~ = vx/D on the right-hand side of the equation. 
Focusing now on a specific initial condition, we consider the case of 

an equilibrium configuration on the left half-line and no particles on the 
right half-line. The initial concentration is then 

po(X)=~-~E1 -O(x) ]  = ~v/2D, x < 0 (3.21) 
~0, x > 0  

where 0(.) is the usual step function. Inserting Eq. (3.21) into (3.20), we 
find the "propagating front" solution 

v ~(x - vt/2)]  
P(x' t) = uD erfc [_ '(~t--f-5 j (3.22) 

where erfc(-) is the complementary error function. (~3) Several snapshots of 
the front are plotted in Fig. 7. The front propagates at speed v/2, while the 
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t . . . . . . . .  �9 
~. 12 

K ' 

~ ~ ~ :, 
v Relative Position (x-~t)Xpe q 

Fig. 7. Snapsho t s  of the concent ra t ion  profile evolving f rom the initial condi t ion  of the 
equi l ibr ium state on the half-line x < 0, and  no particles on the half-line x > 0. The  t imes are 
t = 0.2, 0.5, 1, 2, 5, 10, 20, and  50, in uni ts  of 2D/v 2. 

width of the front spreads proportional to x~-. The location of the half- 
density point, where p(x, t)= v/4D = Peq/2, is exactly x = vt/2. 

An interesting variation on this problem is the initial condition, like 
that above, of the left half-line in equilibrium and the right half-line empty, 
but with a particle definitely at the interface location x = 0. That is, 

V 

po(x) = ~-~ [1 - 0(x)] + 5(x) (3.23) 

Inserting this into the general solution and performing the integrations, we 
find 

v F(x-vt/2)7 / D ~1/2 I (x-vt/2) 2] 
p(x,t)= erfc L ( t-ff  exp j (3.24) 

Several snapshots of this solution are plotted in Fig. 8, and we can compare 
these with the previous example. As before, the front eventually propagates 
at speed v/2 and the width of the front spreads proportional to x//~. After 
the transient decays, however, the location of the half-density point is 
shifted to the right, as compared to the previous example, by a distance 
equal to p~ql=2D/v (this is just the typical interparticle spacing in the 
equilibrium state). It is interesting to note in both of these examples that, 
contrary to the predictions of the nonlinear mean-field reaction-diffusion 
equation, there is no "real" front solutions where the shape becomes time- 
independent in the comoving reference frame. 
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Fig. 8. Snapshots of the concentration profile evolving from the initial condition on 
equilibrium on the half-line x < 0, no particles on the half-line x >  0, but with a particle 
definitely at x = 0. The times are the same as in Fig. 7: t = 0.2, 0.5, 1, 2, 5, 10, 20, and 50, in 
units of 2D/v 2. 

4. D ISCUSSION 

We have presented a simple model of a diffusion-reaction process in 
one spatial dimension which is amenable to a detailed analysis without 
resort to the usual truncations or approximations. Fluctuations and 
correlations are accounted for exactly, and we have found discrepancies 
with the predictions of the usual mean-field reaction-diffusion equations. 
The central new result of this paper is the generalization of the exact 
solution to spatially varying systems. There are a variety of directions for 
future research suggested by the results reported here, several of which we 
wi]l discuss in this section. 

The exact formulation of the process in terms of the empty interval 
probability, as given in Eq. (2.8), allows for the consideration of complex 
space- and time-dependent coefficients D, v, and R. In fact, there is no 
reason why the coefficients themselves cannot be random variables. Then 
the evolution equation becomes a stochastic partial differential equation 
which may be used to explore a variety of situations. The effect of 
externally imposed spatial and/or temporal randomness in many-body and 
nonlinear systems is a topic of current interest and activity, (14'15) and a 
number of specific possibilities come to mind here. For example, the 
coefficients may be constant in time, but random in space. Such "frozen-in" 
randomness may be relevant to the study of the effect of variations in the 
strength of sorption and active sites in zeolites, for instance. Granted, 
analytical progress in the solution of this stochastic system may be slow, 
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but the ability to reduce such a complex system to a relatively simple 
description must be regarded as a useful step. 

We may also consider the situation of spatially constant, but 
temporally random coefficients. Our model offers the opportunity for a 
study of the interplay of internal and external fluctuations in a way that 
has not been possible before. The effect of external noise on the mean-field 
rate equation, the Verhulst equation, has previously been studied in great 
detail in ref. 14. In ~those studies, however, it was necessary to neglect 
spatial variations on both microscopic and hydrodynamic length scales. 
Our treatment here allows us to handle these variations in several ways. 
First, we may consider Eq. (2.8) with temporally random coefficients where 
the statistics of the coefficient stochastic processes are independently 
specified. This provides a stochastic partial differential equation as the 
starting point for the analysis. 

On the other hand, we may exploit the fact that Eq. (2.8) is the evolu- 
tion equation for a probabi l i ty  to formulate a "grand" master equation for 
the joint empty interval and coefficient probability simultaneously. To be 
precise, let us consider the case where the birth rate coefficient jumps 
between two values v+ in the manner of a Markov process. Then we may 
write down the exact evolution equation for the quantities 

E + ( x ,  y, t) = Prob{interval from x to y is empty a n d v  = v+ at time t} 

(4.1) 

If the process v ( t ) j u m p s  from v+ to v at rate c~, and back from v to v+ 
at rate fl, then the probabilities E+ obey 

Ot E a L _ - f l / \ E _ J  

where the operators L+ are 

L +  = D ~ix2 + D ~-ffy2 -- v + - -~x + v + Oy (4.3) 

This is an exact formulation of an interacting, many-body, spatially 
distributed system under the influence of external noise in terms of two 
coupled linear partial differential equations. Further development of this 
topic will be left to a future work. 

In a different direction for further research, we remark that the techni- 
ques introduced in this paper--specifically the use of empty interval 
probabilit ies-- can be used to investigate the microscopic spatial structure 
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of these diffusion-limited reactions through the pair correlation function. 
We had earlier noted in Eq. (2.13) that the mixed second derivative of the 
empty interval probability yields the conditional probability density of 
finding two particles with none in between. To compute the more familiar 
unconditional two-point joint density function, we may expand the notion 
of the empty interval probability to that of the probability of finding two 
disjoint intervals empty. A closed evolution equation for this quantity may 
be formulated along the same logical lines that we have presented here, 
i.e., by considering the various processes occurring within and at the 
boundaries of a pair of disjoint intervals. The evolution of this two-interval 
probability couples to the single-interval probability through the boundary 
conditions, but it does not couple to any higher-interval probabilities. The 
complete development and solution of this problem is left for the future. 

Finally, we have shown in this paper that there are n o  true wavefronts 
for the diffusion-limited reaction 2A~-~A in one spatial dimension, 
contrary to the prediction of the mean-field reaction-diffusion equation, 
Fisher's equation. Fluctuations in the local density cause an ever-broading 
transition region, so a stationary situation is never achieved in any frame 
of reference. This brings up the question of whether the predictions of the 
mean-field equations are e v e r  qualitatively valid for the diffusion-limited 
process. (It also raises the question of the development and significance of 
corrections to this process if we relax the strict diffusion-controlled 
limit. (16)) There is typically a crossover from fluctuation-dominated kinetics 
to mean-field kinetics in diffusion-limited reactions above a certain "criti- 
cal" spatial dimension. In general the critical dimension depends on the 
specific reaction scheme, and whether one consider irreversible decay or 
relaxation to equilibrium or nonequilibrium steady states. Such phenomena 
have been studied in great detail for statistically homogeneous systems (see 
refs. 5, 7, and 8), but have remained largely unexplored in spatially 
inhomogeneous problems. Hence we close with the following question: Is 
there a critical dimension above which the diffusion-limited reaction 
2A ,-~ A supports wavefronts that are (asymptotically) time independent in 
the comoving reference frame? 
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